Método de Newton
En análisis numérico, el método de Newton (conocido también como el método de Newton-Raphson o el método de Newton-Fourier) es un algoritmo eficiente para encontrar aproximaciones de los ceros o raíces de una función rDescripción del método
El método de Newton-Raphson es un método abierto, en el sentido de que su convergencia global no está garantizada. La única manera de alcanzar la convergencia es seleccionar un valor inicial lo suficientemente cercano a la raíz buscada. Así, se ha de comenzar la iteración con un valor razonablemente cercano al cero (denominado punto de arranque o valor supuesto). La relativa cercanía del punto inicial a la raíz depende mucho de la naturaleza de la propia función; si ésta presenta múltiples puntos de inflexión o pendientes grandes en el entorno de la raíz, entonces las probabilidades de que el algoritmo diverja aumentan, lo cual exige seleccionar un valor supuesto cercano a la raíz. Una vez que se ha hecho esto, el método linealiza la función por la recta tangente en ese valor supuesto. La abscisa en el origen de dicha recta será, según el método, una mejor aproximación de la raíz que el valor anterior. Se realizarán sucesivas iteraciones hasta que el método haya convergido lo suficiente. f'(x)= 0 Sea f : [a, b] -> R función derivable definida en el intervalo real [a, b]. Empezamos con un valor inicial x0 y definimos para cada número natural n
Nótese que el método descrito es de aplicación exclusiva para funciones de una sola variable con forma analítica o implícita conocible. Existen variantes del método aplicables a sistemas discretos que permiten estimar las raíces de la tendencia, así como algoritmos que extienden el método de Newton a sistemas multivariables, sistemas de ecuaciones, etc.
Obtención del Algoritmo
Tres son las formas principales por las que tradicionalmente se ha obtenido el algoritmo de Newton-Raphson.
La primera de ellas es una simple interpretación geométrica. En efecto, atendiendo al desarrollo geométrico del método de la secante, podría pensarse en que si los puntos de iteración están lo suficientemente cerca (a una distancia infinitesimal), entonces la secante se sustituye por la tangente a la curva en el punto. Así pues, si por un punto de iteración trazamos la tangente a la curva, por extensión con el método de la secante, el nuevo punto de iteración se tomará como la abscisa en el origen de la tangente (punto de corte de la tangente con el eje X). Esto es equivalente a linealizar la función, es decir, f se reemplaza por una recta tal que contiene al punto (
,
(
)) y cuya pendiente coincide con la derivada de la función en el punto,
. La nueva aproximación a la raíz,
, se logra la intersección de la función lineal con el eje X de abscisas. Matemáticamente:





En la ilustración adjunta del método de Newton se puede ver que


Una forma alternativa de obtener el algoritmo es desarrollando la función f (x) en serie de Taylor, para un entorno del punto




Finalmente, hay que indicar que el método de Newton-Raphson puede interpretarse como un método de iteración de punto fijo. Así, dada la ecuación

Convergencia del Método
El orden de convergencia de este método es, por lo menos, cuadrático. Sin embargo, si la raíz buscada es de multiplicidad algebraica mayor a uno (i.e, una raíz doble, triple, ...), el método de Newton-Raphson pierde su convergencia cuadrática y pasa a ser lineal de constante asintótica de convergencia 1-1/m, con m la multiplicidad de la raíz.
Existen numerosas formas de evitar este problema, como pudieran ser los métodos de aceleración de la convergencia tipo Δ² de Aitken o el método de Steffensen. Derivados de Newton-Raphson destacan el método de Ralston-Rabinowitz, que restaura la convergencia cuadrática sin más que modificar el algoritmo a:
Su principal desventaja en este caso sería lo costoso que pudiera ser hallar g(x) y g'(x) si f(x) no es fácilmente derivable.
Por otro lado, la convergencia del método se demuestra cuadrática para el caso más habitual en base a tratar el método como uno de punto fijo: si g '(r)=0, y g''(r) es distinto de 0, entonces la convergencia es cuadrática. Sin embargo, está sujeto a las particularidades de estos métodos.
Nótese de todas formas que el método de Newton-Raphson es un método abierto: la convergencia no está garantizada por un teorema de convergencia global como podría estarlo en los métodos de falsa posición o de bisección. Así, es necesario partir de una aproximación inicial próxima a la raíz buscada para que el método converja y cumpla el teorema de convergencia local.
Teorema de Convergencia Local del Método de Newton
Sea![f \in \mathcal{C}^2 ([a,b])](http://upload.wikimedia.org/math/4/2/1/421d176f0565d8deba7b2cfeb22b0f9f.png)
![p \in [a,b]](http://upload.wikimedia.org/math/1/e/1/1e171f8b368d66602e04dbb52496b1cb.png)




para todo n y xn tiende a p cuando n tiende a infinito.
![f \in \mathcal{C}^3 ([a,b])](http://upload.wikimedia.org/math/d/3/6/d3685f6ffc8d66c0e2296595189b74ce.png)
Teorema de Convergencia Global del Método de Newton
Sea![f\in{\mathcal{C}^2[a,b]}](http://upload.wikimedia.org/math/4/3/1/431e77df57656500ad40b43f8e531e28.png)
para todo
para todo
![s\in{[a,b]}](http://upload.wikimedia.org/math/d/e/e/dee2231647a98cfdaba82523c5914455.png)

Estimación del Error
Se puede demostrar que el método de Newton-Raphson tiene convergencia cuadrática: si

Error relativo entre dos aproximaciones sucesivas:
Ejemplo
Consideremos el problema de encontrar un número positivo x tal que cos(x) = x3. Podríamos tratar de encontrar el cero de f(x) = cos(x) - x3.Sabemos que f '(x) = -sin(x) - 3x2. Ya que cos(x) ≤ 1 para todo x y x3 > 1 para x>1, deducimos que nuestro cero está entre 0 y 1. Comenzaremos probando con el valor inicial x0 = 0,5
No hay comentarios:
Publicar un comentario